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J. Phys. A: Math. Gen. 20 (1987) 1081-1086. Printed in the UK 

On the solution of a linear operator non-polynomial 
differential equation 

H D Dimitrov 
Department of Physics, University of Sofia, Sofia 1126, Bulgaria 

Received 7 May 1986 

Abstract. A linear operator non-polynomial differential equation relativistically generalising 
the Airy equation and functions is considered. A fundamental system of two solutions of 
that equation representing generalised Airy functions of the first and second kind is obtained. 
Also, the general solution of another differential equation closely connected with the one 
considered is found. 

In this paper we are concerned with the linear operator non-polynomial differential 
equation 

(1 - a 2  d2/dX2)"2y(X)+(fa2X- l)y(X)=O (1) 

where a is a real positive constant, x is a real variable and the sign (i.e. the branch) 
of the square root operator? denotes its absolute eigenvalues. Because the operator 
(1 - c y 2  d2/dx2)"2 is second order (Dimitrov 1981), equation (1) has two and not more 
than two linearly independent solutions (possessing Laplace integral representations), 
and in this sense it is an ordinary second-order differential equation$. It may be seen 
that in the limit a + O f  the equation considered turns into the well known Airy equation 
(see, for instance, Abramowitz and Stegun 1970, Fedoryuk 1983) 

(2) 

In  this way, equation (1) is a generalisation of equation (2) and we shall call it a 
relativistic generalisation of the latter because of its connection with some problems 
of relativistic quantum mechanics. 

Note that some other generalisations of the Airy equation and functions are done 
by Swanson and Headley (1967) and Kohno (1979) and by Sauter (1931) and Dimitrov 
(1982b), as well. By means of the extended form of the Airy equation 

d2y/dx2 - XY = 0. 

d"y/dz" - Z'Y = 0 

where n and s are positive integers and z is a complex variable, Swanson and Headley 
(1967) introduced the Airy functions of the first and second kind when n = 2 and 
Kohno (1979) defined an Airy function of the first kind when n is an even number 

t Note that such types of operators in the literature are known as pseudodifferential operators, too (see, for 
example, Treves 1982, Taylor 1981). 
Z Since the range of definition of a non-polynomial differential operator is the set of all infinitely differentiable 
functions, we assume that every one of the solutions of equation ( 1 )  should have a Laplace integral 
representation. 
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larger than 2. In the solving of a relativistic quantum problem with the help of the 
Dirac equation, Sauter (193 1)  obtained respective solutions essentially representing a 
generalisation of the Airy functions. Also in connection with a physical problem in a 
paper of ours (Dimitrov 1982b), we found the general solution of the linear operator 
non-polynomial differential equation of infinite order 

[cosh(ad/dx)+ bx- c ] Y = O  

where a, b and c are constants. 
We shall seek the solutions of equation (1) when x E I = (-00,oo) by means of the 

method proposed in our paper (Dimitrov 1982a). In accordance with the results of 
that paper (see equations (3) and (38)-(41) in it) the solutions of equation (1) are 
obtained in the form of the following Laplace integral representation: 

where 

Here C is a path of integration in the complex T plane C which is independent of x 
and assures the existence of the integral and is chosen so that the integrand in (3) 
should return to its initial value having passed along it. Moreover, because of the 
branch of the square root operator implied in equation ( l ) ,  at any point T of C the 
amplitude function X (  T )  must satisfy the respective Laplace transform equation 

for T E  C and 7 # f l / a ,  CO. Hence, the path of integration C must lie on one of the 
sheets of the Riemann surface of the integrand in (3) corresponding to the single-valued 
branch of the (operator generating) function 

( 5 )  

From (3) and (4), after the computation of the integral in the exponent of the 

F( 7 )  = (1 - CY2T2)1’2 

defined by the condition F ( 0 )  = 1. 

function (4), we obtain 

3 X€Z. 
1 y(x) = constant IC d7 exp[ (x -5) 7 + ~  [ a ~ (  1 - ~ r ~ ~ ~ ) ’ / ~ + s i n - ’ ( a ~ ) ]  
a 

( 6 )  

Now, it must be taken into account that the integrand in (6) is a multiple-valued 
function with branch points 7 = - l / a ,  T = l / a  and 7 =CO. On every sheet of the 
Riemann surface of that function we shall regard the branch cuts as lying on the rays 
Re ~ = - l / a ,  -coGIm ~ S O a n d R e  ~ = l l a , O G I m  T ~ C O .  Thenthepathofintegration 
C can be chosen on any one of the sheets of the Riemann surface of the integrand in 
(6) which correspond to the principal branch of the square root function ( 5 ) .  Clearly, 
the choice must be done so that the path should start and end at the point at infinity 
going to it in the domains of the 7 plane for which we have 

( 7 )  Re[ 7( 1 - a272)”2] < 0. 
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Choosing the path of integration C in a variety of ways (without leaving the sheet of 
the Riemann surface regarded) we shall obtain all (two) linearly independent solutions 
of equation (1) and possibly their linear combinations. Note that the solutions obtained 
in this way using different branches of the integrand in ( 6 )  with the principal branch 
of the square root function will differ from one another only by inessential constant 
factors. 

Further, it is not difficult to see that inequality (7 )  is satisfied only in the two simply 
connected domains D, and D2 defined by the conditions O <  Im T S C O  when -as 
Re T <  - l / a  and -COS Im T S  CO when - i / a  < Re T < O  for D, and O <  Im TS CO when 
1/ a < Re T s CO for D 2 .  Therefore, the initial and final points of the path of integration 
C in ( 6 ) ,  for example, can be chosen at infinity of the domain DI in the second and 
third quadrants of the T plane, respectively, or contrariwise. Obviously, with an 
accuracy to the sign of the function obtained, all kinds of such paths are equivalent. 
Let us choose the path of integration C to start at infinity of the domain D, in the 
third quadrant and to end at infinity of the second quadrant and so that C should 
coincide with the imaginary axis of the complex T plane. Then, putting Im T = t, from 
( 6 )  we obtain the following solution of equation (1): 

y =constant x y , ( a ;  x)  

for ~~~ 

] ~ € 1  (8) 
y , ( a ;  x ) =  lomdr c o s [ ( x - - $ ) r + ~ [ a r ( l + a 2 t 2 ) 1 / 2 + s i n h - ' ( a r ) ]  1 

a 
where the functions w 1 I 2  and sinh-' w are given by their principal branches. 

Clearly, there are two other possibilities for the choice of the path of integration 
C in ( 6 ) ,  namely, so that one of the ends of C should be at infinity of the domain D2 
and the other end should be at infinity of the domain D , ,  either in the second or in 
the third quadrant of the complex T plane. However, as may be seen, all paths C in 
( 6 )  obtained by doing so are equivalent. Thus, from (6) it is possible to obtain only 
a second linearly independent solution of equation (1). Let us now choose the path 
of integration C to start at infinity of the domain D, in the third quadrant and to end 
at infinity of the domain D2 of the complex T plane and so that its parts should coincide 
with the negative imaginary axis, with the line segment O S  Re T < l / a ,  Im T = 0, and, 
after surrounding the branch point T = l/a, with the ray i / a  < Re T s CO, Im T = 0. 
Then, once again using everywhere t for the real-valued integration variable and taking 
into consideration that (8) is a solution of equation ( l ) ,  from ( 6 )  we find the following 
second solution of that equation: 

y = constant x yz( a ;  x)  

for 

I 1 
y2( a ; x) = Iom d t sin [ (x - -$) t + -5 [at ( 1 + a t 2 )  + sinh-'( at )  ] 

a 

1 + jol'u dr exp[ ( x - 3 )  r+-$ [ar(l- a2r2)1/2+sin- '(ar)]  
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Here i = (-1)”2 and as in (8) each of the functions w’” ,  sinh-’ w, sin-’ w and log w 
are given by their principal branches. 

Therefore, the functions (8) and (9) form a fundamental system of solutions of 
equation (1 )  since the latter has no other linearly independent solutions. We notice 
that in the case of real x, the first solution (8) is real-valued but the second one (9) is 
a complex-valued function. Thus, the general solution of equation (1) may be written 
in the form 

where C ,  and Cz are arbitrary (complex) constants of integration. 
Furthermore, as is to be expected, in the limit cy + O+ from (8) and (9) we obtain 

where A, (z)  and B , ( z )  (generally, for a complex variable z E C) are the Airy functions 
of the first and second kind, respectively, given by the integral representations 
(Abramowitz and Stegun 1970) 

B,(z) = - A,(z )=-  d t c o s ( z t + f t 3 )  

For that reason, with an  accuracy of constant factors, it is natural to introduce the 
symbols A , ( a ;  x) and & ( a ;  x) for the functions y , ( a ;  x) and y , (a ;  x) and to call them 
relativistic generalised Airy functions of the first and second kind, respectively. Then 
we should have 

dt[sin( ZI +if’) + exp(zr -f13)]. 
3 ” 7  rr J1: 31‘3 rr r 

A l ( a ;  x)=Aoyi(a; X) Bi(a; x)=Boyz(a; XI 

and (12)  

A,(O; x)  = A,(x) 

where A. and Bo are normalisation factors. 

solutions (having Laplace integral representations) of the differential equation 

B,(O; x)  = 

Now, when the solutions of equation (1) are known, it is easy to find also the 

(13) 

which is obtained from (1) by replacing the branch of the square root operator with 
the other one. Indeed, performing the substitutions of the independent variable x with 
5 and the unknown function yi-’(x) with ~ ( 5 )  by virtue of the equalities 

-( 1 - cyz d’/dx2)’’*y‘-’(X)+ ($CY*X - l)y‘-’(X) = 0 

4 
C Y 2  

5 x=--  (14) 

we obtain from (13) a differential equation for the function q(5) exactly of the same 
form as equation (1). Hence, taking into consideration the solutions of the latter, (8)  
and (9 ) ,  and also the relations (12) and (141, we conclude that a fundamental system 
of solutions of equation (13) is given by the functions 

4 
Y:-’(x) = A , ( a ;  5 )  and Y:-’(x) = & ( a ;  5 )  for & = i - x  x E I .  

CY 

(15) 
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Thereby, with the analogy of ( l o ) ,  the general solution of equation (13) may be 
expressed in the form 

Y' - ' (x )  = C\- 'A,(CK; 4/a2  - X )  + C;- 'B , (a;  4/a2 - X )  (16) 
where C\ - '  and Cl- '  are (complex) constants of integration. We should note that in 
contrast to ( l l ) ,  limits of the functions (15) and, consequently, of (16) d o  not exist 
when a + 0'. 

It is clear that the behaviour of the solutions of equation (1) A , ( a ;  X )  and & ( a ;  x)  
for O <  a, obtained as functions of x, is quite similar to that of the Airy functions A , ( x )  
and B , ( x ) ,  respectively. Moreover, in accordance with (8),  (9), (12), (15) and (16), 
the solutions of equations (1)  and (13) are closely connected with each other. Thus, 
as must be expected, by changing the sign of x - xo, where xo = 2 / a z  is the turning 
point of equation ( l ) ,  every solution y ( x )  of that equation is converted into a corre- 
sponding solution y ' - ' ( x )  of equation (13) and conversely. 

Now we note that all the considerations which we have done for finding the solutions 
of equations (1) and (13) are also valid in the case of a complex independent variable 
z E C instead of the real one x. Obviously, the generalised Airy functions A, (a ;  z )  and 
& ( a ;  z )  obtained with exactness to constant factors from (8) and (9) and according 
to (12) by replacing the real variable x with a complex variable z are entire functions. 

Finally, we may note also that it is not difficult to obtain the solutions of the more 
general differential equation of the form ( 1 )  as well where the real variable x is replaced 
by a complex variable Z E C  and the parameter a is considered as an arbitrary given 
complex constant, different from zero. Then, as it is seen immediately, the form of 
the Laplace integral representation (6) remains valid for the solutions of the equation. 
Besides, without loss of generality, i t  is enough to suppose that O S  /arg a /  s n /2 .  
Furthermore, by the substitution of the integration variable T with U, according to the 
equality T = U exp(-i arg a ) ,  we reduce the integral representation (6) to the form in 
which the integrand is a multiple-valued function of u with branch points u = l / l a l ,  
u = l/laI and u =a. The branch cuts for the integrand can then be selected in much 
the same manner as it was done above in the case of real positive a. However, now 
the path of integration C must be chosen on anyone of the sheets of the Riemann 
surface of the integrand corresponding to the principal branch of the square root 
function (1 - /a /2u2)"2  and so that the ends of C should go to the point at infinity in 
the domains of the complex u plane for which (instead of ( 7 ) )  the inequality 

l a l 'Re (<( l  - a  2 T 2 1 2  ) = Re[u(l  -Ia)*u2)"'exp(-3i arg a ) ] < O  
a 

is satisfied. In this way, by choosing all the possible non-equivalent paths of integration 
C we shall find a fundamental system of two (complex-valued) solutions of the 
equation. From that system of solutions we could also immediately obtain the general 
solution of the differential equation of the form (13), however, with a complex 
independent variable z E C instead of x and with a complex parameter a # 0 by replacing 
z with 4 / a 2  - z. Clearly, all the solutions obtained in this way will be entire functions 
of z. 
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